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Abstract. The dressed-state populations and the resonance fluorescence spectrum of a V-type three-level
atom driven by a strong coherent field and a weak stochastic one simultaneously are investigated. There
can be significant population inversion due to the effect of the stochastic field. The atomic resonance
fluorescence spectrum can be controlled by adjusting the frequency difference between the coherent field
and the stochastic one and the coherent Rabi frequency. Peak suppression and line narrowing occur under
appropriate conditions.

PACS. 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multi-photon processes;
dynamic Stark shift – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

It is well-known that when a two-level atom is driven by
a strong coherent field, the resonance fluorescence spec-
trum exhibits a Mollow symmetric triplet [1], in which
the locations of two sidebands depend on the generalized
Rabi frequency and the relative heights and widths of the
triplet are independent of the intensity of the laser field.
Recently, considerable attention has been paid to modi-
fying the standard resonance fluorescence spectrum. One
way is to place the coherently driven atom inside a cavity,
for which spectral features can be changed dramatically,
for example, dynamical suppression and enhancement and
spectral line narrowing of the Mollow triplet have been
predicted [2,3] theoretically and observed [4,5] experimen-
tally. Another method is to bathe the atom in a squeezed
vacuum. It has been found [6,7] that the linewidths of the
spectral characters strongly depend on the relative phase
between the squeezed vacuum and the driving field, and
can be broadened or narrowed compared to that in the
ordinary vacuum. By use of the quantum interference in-
duced by spontaneous emission for a multi-level system,
the phenomena such as resonance fluorescence quenching
and line narrowing have been revealed [8,9].

However, in the view of practice, a driving field may
have amplitude or frequency fluctuations (or both), a lot
of studies have been pursued on atomic response to fluctu-
ating fields [10] and the modification of the Mollow triplet
due to field fluctuations has been elucidated [11–13]. For
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an atom driven by a finite bandwidth laser, spectral
broadening, sideband suppression, and asymmetry of the
Mollow spectrum were predicted [11]. Recently, it has been
shown [12,13] that in the system of a two-level atom driven
by a strong coherent field as well as a weak stochastic
field with wide bandwidth, the stochastic field may give
rise to dramatic narrowing of the linewidths of all three
peaks [12] and the appearance of a similar phase-sensitive
spectral profiles in resonance fluorescence to that which
occurs in the squeezed vacuum [13].

On the other hand, after the initial ideas [14] and ex-
perimental demonstration [15,16] of the feasibility of the
control of photoabsorption and photoemission and their
products through the control of the relative phase of two
coherent fields (which was often termed as coherent con-
trol) much work in atoms [17] and molecules [16] has ex-
plored a variety of processes. Many interesting results have
been revealed, establishing thus the idea as a useful tool.
The effect of the relative phase of two coherent driving
fields on the transient dynamics of two-level atoms has
been investigated experimently [18], the measured fluo-
rescence intensity is strongly phase-dependent. Schemes
have also been proposed using the phase difference to
control the quantum interference between different tran-
sition channels to manipulate spontaneous emission [19]
and the shape of the Autler-Townes doublet [20] in mul-
tilevel atomic systems. However, the effects of the am-
plitude or frequency fluctuations (or both) are not taken
into account. Different from the above coherent control
method to manipulate the radiation properties of atoms,
here we will stress that adjusting the central frequency
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of a stochastic field with finite bandwidth can be used to
modify the radiation properties significantly.

In this paper, we investigate the resonance fluorescence
of a V-type three-level atom driven by a strong coherent
field as well as a weak stochastic field with a wide band-
width. We demonstrate that the atomic populations in
dressed state representation, and fluorescence spectrum
can be strongly controlled by adjusting the central fre-
quency of the stochastic field. In Section 2, the model is
described and an effective master equation for the reduced
density operator of the atom is derived when the coherent
driving field is much stronger than the stochastic field.
For simplicity, we restrict our attention to the situation
where the frequency of the coherent field is tuned to the
mean Bohr frequency of the excited states. Section 3 is de-
voted to discussing the atomic population distribution in
the dressed state representation. It is found that the pop-
ulations in the dressed states are strongly dependent on
the frequency detuning δ between the coherent field and
the stochastic one. Under certain conditions, the popu-
lations may be inverted. The plots of the dressed states
populations against δ are used to provide a understanding
of the phenomena in the subsequent section. In Section 4,
we study the effect of the stochastic field on the resonance
fluorescence spectrum of the atom. Asymmetrically spec-
tral features and spectral line narrowing can be reached
by adjusting δ and Rabi frequency. These phenomena are
owing to the dynamical control of the dressed state popu-
lations and the atomic transition rates. Finally we give a
summary.

2 Model and master equation

Consider a V-configuration three-level atom consisting of
two excited states |1〉 and |2〉 coupled to a common ground
state |0〉, bichromatically driven by a coherent field with
frequency ωL and a constant amplitude Ec as well as by a
stochastic field with a center frequency ωs and a complex,
stochastically fluctuating amplitude Es(t). In the frame of
the rotating wave approximation at the frequency ωL, the
master equation of the density matrix ρ for the system is
of the form

ρ̇ = −i[Ha−c +Ha−s, ρ] + LAρ, (1)

where

Ha−c = −(ω21 −∆)A11 +∆A22 +Ω2(A02 +A20)

+Ω1(A01 +A10), (2)

Ha−s =
1
2
{e−iδt[χ1(t)A10 + χ2(t)A20]

+ eiδt[χ∗1A01 + χ∗2A02]}, (3)

LAρ =
γ1

2
(2A01ρA10 − ρA11 −A11ρ)

+
γ2

2
(2A02ρA20 − ρA22 −A22ρ). (4)

Here LAρ characterizes the atomic damping due to the
interaction of the vacuum field, γ1 and γ2 are the decay
constants of the levels |1〉 and |2〉. Ha−c and Ha−s describe
the interaction of the atom with the coherent field and
stochastic field respectively, ω21 = ω2 − ω1 is the level
spacing of the two excited levels, ∆ = ω2 − ωL denotes
the detuning between the frequency ω2 of the atomic
transition |0〉 → |2〉 and the frequency ωL of the coherent
part of the driving field, δ = ωs − ωL is the frequency
difference between the coherent and chaotic parts of the
driving field, 2Ωi = 2|di0 · eEc|/~ (i = 1, 2) is the Rabi
frequency of the atomic transitions |0〉 ↔ |i〉 (i = 1, 2)
under the interaction of the coherent component of the
driving field, and χi(t) = 2di0 · eEs(t)/~ represents the
amplitude of the stochastic field-atom interaction, which
is assumed to be a complex Gaussian-Markovian random
process with zero mean value and correlation functions

〈χi(t)χ∗j (t′)〉 = Dijκe−κ|t−t
′|; 〈χi(t)χj(t′)〉 = 0, (5)

where Dij is proportional to the strength of the stochastic
process and κ can be associated with the bandwidth of the
stochastic field. These correlation functions (Eq. (5)) de-
scribe a field undergoing both phase and amplitude fluctu-
ations, which result in a finite bandwidth κ of the field. In
the limit of κ→∞, the correlation reduces to a δ-function
and the stochastic field is then a complex white noise field.
For simplicity of calculation, we assume that ∆ = ω21/2
and |d10| = |d20| so that γ1 = γ2 = γ, Ω1 = Ω2 = Ω,
Dij = D.

Here we assume that the intensity of the coherent
field is much greater than that of the stochastic field
and the bandwidth κ of the stochastic field is much
greater than the atomic linewidth (that is to say, the
correlation time κ−1 of the stochastic field is very short
compared to the radiative lifetime γ−1 of the atom),
i.e., 4Ω2 � Dκ, and κ � γ. In this limit one can
invoke standard perturbative techniques to eliminate the
stochastic variables χi(t) (i, j = 1, 2) [5,12]. Consequently,
the master equation for the reduced density operator ρ
for the atom can be expressed as

ρ̇ = −i[Ha−c, ρ]− 1
4

([A01 +A02, [S+, ρ]]

+ [A10 +A20, [S−, ρ]]) + LAρ, (6)

where

S− = Dκ

∞∫
0

dτ e−(κ+iδ)τe−iHa−cτ (A01 +A02)eiHa−cτ

= B0A00 +B1A11 +B2A22 +B3A02 +B4A20

+B5A01 +B6A10 +B7A21 +B8A12 = (S+)†, (7)
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with the coefficients Bi (i = 0, 1, ...8) given by

see equation (8) above

with

f(n) =
Dκ

κ+ i(δ + nΩr)
= R(nΩr)− iI(nΩr) (n = 0,±1,±2),

η =
Ω

2Ωr
, ε =

ω21

2Ωr
, (9)

and Ωr =
√
ω2

21 + 8Ω2/2 is a generalized Rabi frequency.
The first term on the right-hand-side of equation (6) de-
scribes the coherent interaction between the atom and the
coherent part of the driving field, while the second term
represents the effect of the stochastic part of the driving
field. The last term characterizes the spontaneous decay
of the atom induced by the standard vacuum field.

From the modified master equation (6), one can obtain
the equations of motion of the reduced density matrix el-
ements for the atomic variables to be of the form

ρ̇10 = −
[
γ

2
+ i(∆− ω21) +

1
4

(2B5 +B3)
]
ρ10 −

B3

4
ρ20

+
[
iΩ +

1
4

(B1 −B2 −B7)
]
ρ12

+
(

2iΩ − B8

4

)
ρ11 +

(
iΩ +

B8

4

)
ρ22 +

B6

2
ρ01

+
1
4

(B4 +B6)ρ02 +
1
4
B8ρ21 − iΩ (10)

ρ̇20 = −
[
γ

2
+ i∆+

1
4

(2B3 +B5)
]
ρ20 −

B5

4
ρ10

+
[
iΩ +

1
4

(B2 −B1 −B8)
]
ρ21

+
(

2iΩ − B7

4

)
ρ22 +

(
iΩ +

B7

4

)
ρ11 +

B4

2
ρ02

+
1
4

(B4 +B6)ρ01 +
1
4
B7ρ12 − iΩ (11)

ρ̇21 = −
[
γ + iω21 +

1
4

(B3 +B∗5)
]
ρ21 −

B5

4
(ρ11 − ρ00)

− B∗3
4

(ρ22 − ρ00)
[
iΩ +

1
4

(B∗2 −B∗0)
]
ρ20

+
[
−iΩ +

1
4

(B1 −B0)
]
ρ01 +

B∗8
4
ρ10 +

B7

2
ρ02

(12)

ρ̇11 = −
[
γ +

1
4

(B5 +B∗5 )
]
ρ11 +

1
4

(B5 +B∗5)ρ00

+
[
iΩ +

1
4

(B∗1 −B∗0)
]
ρ10 +

B∗7
4
ρ20 +

B7

4
ρ02

+
[
−iΩ +

1
4

(B1 −B0)
]
ρ01 −

B∗3
4
ρ12 −

B3

4
ρ21

(13)

ρ̇22 = −
[
γ +

1
4

(B3 +B∗3 )
]
ρ22 +

1
4

(B3 +B∗3)ρ00

+
[
iΩ +

1
4

(B∗2 −B∗0)
]
ρ20 +

B∗8
4
ρ10 +

B8

4
ρ01

+
[
−iΩ +

1
4

(B2 −B0)
]
ρ02 −

B5

4
ρ12 −

B∗5
4
ρ21.

(14)

Equations (10–14) show that the effect of the stochas-
tic field on the atom gives rise to incoherent damping
terms, incoherent pumping terms, and quantum inter-
ference terms originating from incoherent damping and
pumping processes. If the bandwidth κ of the stochastic
field tends to infinity, i.e., κ→∞, which means that the
stochastic field is just a complex white noise field, then
from equation (8) we see that Bi (i = 0, 1, ..., 8) can be
approximated as B3 = B5 = D and Bj = 0 (j 6= 3, 5).
In this case, except the incoherent damping and pump-
ing terms, there appear quantum interference terms in
equations (10–14) (for example, B5ρ12/4 and B∗5ρ21/4 in
Eq. (14)), these terms are very similar to the quantum in-
terference terms arising from spontaneous emission when
the two dipole moments of the V-type three-level atom
are non-orthogonal [21]. Fleischhauer et al. [22] predicted
that in a double Λ system, this quantum interference, orig-
inating from the incoherent pumping processes, can lead
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to lasing without inversion and to an enhancement of re-
fraction without absorption. Here, we consider the case
of the bandwidth κ of the stochastic field being finite, so
Bi 6= 0 (i = 0, 1, ..., 8), then there appear a lot of extra
quantum coherence terms related to Bi. All these quantum
coherence terms, which reflecting the quantum interfer-
ence due to incoherent pumping and damping processes,
modify the atomic behavior such as atomic populations
and resonance fluorescence spectrum significantly.

3 Steady-state populations in dressed state
representation

In this section we focus our attention on the effect of
the stochastic field on the steady-state behavior of the
atomic populations in the dressed state representation.
The dressed states, defined by the eigenvalue equation,
Ha−c|α〉 = λα|α〉, are of the form

|a〉 =
1
2

[−(1− ε)|2〉 − (1 + ε)|1〉+ 4η|0〉],

|b〉 = −2η|2〉+ 2η|1〉+ ε|0〉],

|c〉 =
1
2

[(1 + ε)|2〉+ (1− ε)|1〉+ 4η|0〉], (15)

and the corresponding eigenvalues are λa = −Ωr, λb = 0,
and λc = Ωr.

In the high field intensity limit, where the generalized
Rabi frequency Ωr is much larger than all relaxation rates,
i.e., Ωr � D, γ, the coupling between atomic density ma-
trix elements ραβ (α, β = a, b, c) associated with various
frequencies may be omitted. Under the secular approxima-
tion, from equation (6) we can easily obtain the equations
of motion for the populations in the dressed states in the
following rate equation form

ρ̇aa = −(Rab +Rac)ρaa +Rcaρcc +Rbaρbb,

ρ̇bb = −(Rbc +Rba)ρbb +Rcbρcc +Rabρaa,

ρ̇cc = −(Rca +Rcb)ρcc +Racρaa +Rbcρbb, (16)

where Rαβ (α, β = a, b, c) represent the atomic transition
rates from one dressed state |α〉 to another one |β〉, which
are defined as follows

Rca = Rac =
γ

4
(1− ε4) + 2η2[R(2Ωr) +R(−2Ωr)],

Rba =
γ

2
(1− ε2)2 +

ε2

2
R(Ωr),

Rbc =
γ

2
(1− ε2)2 +

ε2

2
R(−Ωr),

Rab =
γ

2
ε2(1 + ε2) +

ε2

2
R(Ωr),

Rcb =
γ

2
ε2(1 + ε2) +

ε2

2
R(−Ωr). (17)

The terms related to the spontaneous decay rate γ in the
transition rates Rαβ describe the spontaneous damping
rate of the atom from the dressed state |α〉 to |β〉. Ev-
idently, due to the effect of the stochastic field, there

appear extra terms associated with the Lorentz func-
tions R(±Ωr) and R(±2Ωr) in Rαβ . All the transition
rates Rαβ are strongly dependent on the frequency dif-
ference δ between the coherent field and the stochastic
one. The Lorentz functions R(±Ωr) and R(±2Ωr) in-
troduce resonances at δ = ±Ωr and ±2Ωr into Rαβ .
This resonance property reflects the fact that the coher-
ent field-atom interaction forms a “dressed” atom whose
energy-level structure is intensity dependent and whose
spontaneous emission dominates at the five frequencies
ωL, ωL±Ωr, ωL±2Ωr. The dressed atom is then driven by
the stochastic field. Therefore, when the central frequency
of the stochastic field is tuned to these frequencies, the cor-
responding atomic transition is enhanced. This resonance
property of the transition rates may lead to the resonance
structures at four points δ = ±Ωr,±2Ωr in the dressed-
state populations ρii (i = a, b, c).

Equations (17) show that the transition rates Rca and
Rac contain two Lorentz functions R(±2Ωr). These two
Lorentz functions in Rca and Rac originate from differ-
ent physical processes. Because the impact of the stochas-
tic field with wide bandwidth on the atom gives rise to
incoherent pumping and incoherent damping simultane-
ously, the component R(−2Ωr) in the transition rate Rca
(Rac) reflects the incoherent damping (pumping) from
the dressed state |c〉 (|a〉) to |a〉 (|c〉), and the other one
R(2Ωr) in Rca (Rac) characterizes the incoherent pump-
ing (damping) from |c〉 (|a〉) to |a〉 (|c〉). But the other
rates related to the middle dressed state |b〉 contain only
one Lorentz function R(Ωr) or R(−Ωr). The term con-
taining R(Ωr) (R(−Ωr)) in Rba (Rbc) arises from the in-
coherent pumping processes from |b〉 to |a〉 (|c〉), and the
term associated with R(±Ωr) in Rab and Rcb is respon-
sible for the incoherent damping processes from |a〉 and
|c〉 to |b〉, respectively. That is to say, both the incoherent
damping and pumping rates appear in Rca and Rac due
to the effect of the stochastic field, but only the damping
or pumping rate in the transition rates is associated with
the dressed state |b〉. This is because for the system con-
sidered here, a coherently driven V-type three-level atom
interacting with a stochastic field, there exists nine double-
channels for the atomic transition from the dressed states
|α〉 to |β〉, which originate from the atomic bare state tran-
sitions |1〉 ↔ |0〉 and |2〉 ↔ |0〉 respectively. Constructive
or destructive interference happens within every double-
channel. For the incoherent damping processes, the two
double-channels for the transitions |b〉 → |c〉 and |b〉 → |a〉
are completely destructive for the stochastic field, that is,
the transitions from |b〉 to |c〉 and |b〉 to |a〉 never result
in the emission of a photon into the stochastic field. So no
terms reflecting the incoherent damping processes due to
the effect of the stochastic field appear in Rba and Rbc. At
the same time, the other seven double-channels are still
open to the stochastic field, which leads to the appear-
ance of the incoherent damping rates in Rca, Rac, Rab
and Rcb. However, for the incoherent pumping processes
induced by the stochastic field, the two double-channels
for the transitions |c〉 → |b〉 and |a〉 → |b〉 are completely
destructive for the stochastic field, which means that the
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ρcc =
Rbc(Rac +Rab +Rba) +Rba(Rac −Rbc)

(Rac +Rab +Rba)(Rca +Rcb +Rbc)− (Rca −Rba)(Rac −Rbc)
,

ρaa =
Rba(Rca +Rcb +Rbc) +Rbc(Rca −Rba)

(Rac +Rab +Rba)(Rca +Rcb +Rbc)− (Rca −Rba)(Rac −Rbc)
,

ρbb = 1− ρaa − ρcc. (18)

ρcc − ρaa =
γε2(3ε2 − 1)[R(−Ωr)−R(Ωr)]/2

(Rac +Rab +Rba)(Rca +Rcb +Rbc)− (Rca −Rba)(Rac −Rbc)
(19)

transitions from |c〉 to |b〉 and from |a〉 to |b〉 never re-
sult in the absorption of a photon in the stochastic field.
Consequently, there is no term describing the incoherent
pumping processes in Rcb and Rab. Likewise, the other
seven double-channels remain open to the absorption of
photons in stochastic field, thus, there exist the terms re-
lated to the incoherent pumping rates in other transition
rates. Therefore, the transition rates Rca and Rac consist
of two Lorentz functions R(±2Ωr), one is from incoherent
pumping processes and the other one from the incoherent
damping processes due to the effect of the stochastic field,
but the other rates Rαβ related to the dressed state |b〉
only contain one Lorentz function, which reflects the ef-
fect of the incoherent pumping processes or the effect of
the incoherent damping processes separately.

The steady-state dressed populations are obtained
from equations (16) to be

see equations (18) above.
The dressed state populations are plotted as a function
of the detuning in Figure 1. These plots have been ob-
tained by a numerical solution of equations (10–15), but
we have found that equations (18) provide an excellent
approximation in the high field intensity limit.

It is evident that if the excited levels of the V-
configuration three-level atom are nearly degenerate
(ε ≈ 0) as shown in Figure 1a, the populations in the
dressed states are not sensitive to the frequency detun-
ing δ and ρbb approaches to zero. This is because when
ε2 ≈ 0, the transitions |a〉 → |b〉 and |c〉 → |b〉 are turned
off (as Rab, Rcb ∝ ε2), whereas the rate of the transitions
out of |b〉 is nonzero, therefore there is no steady-state
population in the middle dressed state |b〉, all the popu-
lations are accumulated in the upper and lower dressed
states |c〉 and |a〉. In this case, equations (18) are approxi-
mated to be: ρbb ≈ 0, ρcc ≈ ρaa ≈ 1/2. That is to say, the
populations in the dressed states are not sensitive to δ. In
general, in regime 8Ω2 � ω2

21, the population in |b〉 would
be very small and ρii (i = a, b, c) would be not sensitive
to δ. In Figure 1e (Ω = 150) and Figure 1f (Ω = 300),
where we are only beginning to approach this limit, the
behavior is similar. As we see, in the neighborhood of
δ = ±2Ωr, no resonant structures appear in ρii and ρbb
is very small, whilst the resonant structures remain only
around δ = ±Ωr.

If the level spacing of the two excited states is large
and the Rabi frequency is not very high, as shown in Fig-

ures 1b and 1c, the populations ρii exhibit resonant struc-
tures at δ = ±Ωr and ±2Ωr. However, Figures 1b and 1c
show that in the negative region of δ, ρaa > ρcc, and in the
positive domain of δ, ρaa < ρcc. And in Figures 1e and 1f,
this frequency-detuning-dependent property is reversed.
As mentioned above, the transitions rates R(αβ) consist
of the spontaneous damping rates, the incoherent damping
rates and the incoherent pumping rates arising from the
effect of the stochastic field. The competition between the
damping and the pumping processes may lead to differ-
ent frequency-detuning-dependent properties of ρcc− ρaa.
From equation (19) the population difference between the
dressed states |c〉 and |a〉 can be written as

see equation (19) above.

Evidently, if ε2 > 1/3, i.e., ω21 > 2Ω, then in the negative
region of δ, ρcc < ρaa since R(−Ωr) < R(Ωr), whilst in
the positive region of δ, ρaa < ρcc as shown in Figures 1b
and 1c. When ε2 < 1/3, i.e., ω21 < 2Ω, ρcc > ρaa for δ < 0
and ρaa > ρcc for δ > 0 as shown in Figures 1e and 1f.
In Frame 1d (Ω = 110) we see that for δ < 0, ρaa may
be less or larger than ρcc. This is because when we de-
rive equations (16), the secular approximation is used and
the contribution of the nondiagonal matrix elements are
neglected. However as we see, the approximated critical
relation ω21 = 2Ω is coincides with the numerical results
very well. So due to the effects of the stochastic field, there
exists a critical relation between the level spacing of two
excited states and the Rabi frequency to lead to ρcc > ρaa
or ρcc < ρaa for the same frequency detuning δ.

However, in the limit of the bandwidth κ → ∞, i.e.,
the correlation in equation (5) reduces to a δ-function
and the stochastic field is a complex white noise field,
R(−Ωr) ≈ R(Ωr) = D and equations (18) then becomes

ρcc = ρaa =
γ(1− ε2)2 + ε2D

γ(3ε4 − 3ε2 + 2) + 3ε2D
·

That is to say, population inversion between the upper
dressed state |c〉 and the lower one |a〉 can never happen,
which is similar to the case in the absence of the stochas-
tic field [8]. So the population inversion in the dressed-
state representation should be attributed to the transi-
tion rates Rαβ dependent on the frequency detuning δ
when the bandwidth κ of the stochastic field is finite. In
other words, equations (6–9) indicate that the stochastic
field with finite bandwidth forms a frequency-dependent
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Fig. 1. The dressed-state populations against δ. ρbb is represented by a solid line, ρaa by a dashed line, and ρcc by a dotted
line. In Frame (a) we take Ω = 100 and ω21 = 10, in Frames (b–f) we set ω21 = 200 and Ω = 90, 98, 110, 150, 300, respectively.
The other parameters are taken to be: γ = 1, D = 40, κ = 80.
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bath for the V-type three-level atom, tailoring this bath
through adjusting the frequency detuning δ can be used
to realize the population inversion.

4 Resonance fluorescence spectrum

The fluorescence emission spectrum is composed of coher-
ent and incoherent components [16]. The coherent Raleigh
part, whose origin can be traced to the elastic scattering
of the coherent driving field, gives rise to only δ-function
contributions, while the incoherent part stems from the
fluctuations of the dipole polarizations. Hereafter we pay
attention only to the incoherent resonance fluorescence
spectrum, which is defined as

Λ(ω) = Re

∞∫
0

dτ e−iωτγ[〈∆A10(t+ τ)∆A01(t)〉

+ 〈∆A20(t+ τ)∆A02(t)〉]|t→∞ (20)

where ∆Aij(τ) = Aij(τ) − 〈Aij(∞)〉 represents the de-
viation of the atomic operator Aij(τ) from its mean
steady-state value. The two-time correlation functions
limt→∞〈∆Ai0(t+τ)∆A0j(t)〉 can be obtained by use of the
quantum regression theorem [23], together with the opti-
cal Bloch equations (10–14). To do this, we define vectors
Rk(t) (k = 1, 2) for the steady-state two-time correlations
of the atom

Rk(t) =[〈∆A20(t)∆A0k(0)〉, 〈∆A02(t)∆A0k(0)〉,
〈∆A22(t)∆A0k(0)〉, 〈∆A10(t)∆A0k(0)〉,
〈∆A01(t)∆A0k(0)〉, 〈∆A11(t)∆A0k(0)〉,
〈∆A21(t)∆A0k(0)〉, 〈∆A12(t)∆A0k(0)〉]T . (21)

According to the quantum regression theorem, for t > 0
we have

d
dt

Rk(t) = MRk(t) (k = 1, 2), (22)

where M is a 8× 8 matrix whose explicit expression can
be easily derived from equations (10–14) by the defini-
tion of Bloch vector [〈A20(t)〉, 〈A02(t)〉, 〈A22(t)〉, 〈A10(t)〉,
〈A01(t)〉, 〈A11(t)〉, 〈A21(t)〉, 〈A12(t)〉]T . Taking the Fourier
transformation of equation (20), in the long time limit,
i.e., t→∞, we find the incoherent fluorescence spectrum
in the form

Λ(ω) = Re
8∑
j=1

γ[L1j(iω)R(j)
2 (0) + L4j(iω)R(j)

1 (0)], (23)

where R(j)
k (0) is the initial component of the vector Rk(t)

(k = 1, 2), which defined in equation (19). Lkj(iω) is one
element of the matrix L(iω) = (iωI−M)−1, while I is the
identity matrix.

Figures 2–4 exhibit the effects of the relative frequen-
cies of the coherent and stochastic fields on the resonance
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Fig. 2. The resonance fluorescence spectrum for κ = 80,
D = 40 and γ = 1, ω21 = 10, Ω = 100, and (a) δ = 0, (b)
δ = Ωr, and (c) δ = 2Ωr.
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Fig. 3. Same as Figure 2 except ω21 = 200 and Ω = 300.
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Fig. 4. Same as Figure 2 except ω21 = 200 and Ω = 90.
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fluorescence spectrum. The spectra vary drastically with
the frequency of the stochastic field. For example, if the
central frequency of the stochastic field is the same as that
of the coherent field, i.e., δ = 0, Figures 2a, 3a and 4a
show that the fluorescence spectrum exhibits five sym-
metric peaks located at ωL, ωL ± Ωr and ωL ± 2Ωr. The
central peak is much higher and narrower than the inner
and outer sidebands. When the stochastic field is tuned to
resonate with one of the sidebands, the spectrum becomes
asymmetric and the central peak is suppressed and broad-
ened while the sidebands are enhanced and narrowed as
displayed in Figures 2b, 2c, 3b, 3c, 4b and 4c.

The physics associated with the spectral line narrowing
and asymmetries arising from the effect of the stochastic
field can be easily explored by working in the semiclassi-
cal dressed-state representation. In the high field intensity
limit, where the effective Rabi frequencyΩr is much larger
than all relaxation rates, i.e., Ωr � γ,D, the dressed en-
ergy levels are well separated, one can apply the secular
approximation to simplify the equations of motion for the
atomic density matrix elements in the dressed state repre-
sentation, which are obtained according to equation (6) as

ρ̇aa =− Γ1+ρaa + Γ2+ρcc +Rba,

ρ̇cc =− Γ1−ρcc + Γ2−ρaa +Rbc,

ρ̇ab =− (Γ3+ − iΩ3+)ρab − Γ4ρbc,

ρ̇bc =− (Γ3− − iΩ3−)ρbc − Γ4ρab,

ρ̇ac =− (Γ5 − iΩ5)ρac (24)

where

Γ1± = (γ/4)(3− 2ε2 + 3ε4)

+ 2η2[R(2Ωr) +R(−2Ωr)] + ε2R(±Ωr),

Γ2± = (γ/4)(1− ε2)(3ε2 − 1)

+ 2η2[R(2Ωr) +R(−2Ωr)]− (ε2/2)R(±Ωr),

Γ3± = (γ/4)(3 + ε2 − 2ε4) + η2[2R(0) +R(2Ωr)

+R(−2Ωr)] + ε2[R(±Ωr)/2 +R(∓Ωr)/4],

Γ4 = (γ/2)ε2(1− ε2),

Γ5 = (γ/4)(3 + ε4) + 2η2[4R(0) +R(2Ωr)

+R(−2Ωr)] + (ε2/4)[R(Ωr) +R(−Ωr)],

Ω3± = Ωr + η2[I(2Ωr)− I(−2Ωr)]

± ε2[I(±Ωr)/2 + I(∓Ωr)/4],

Ω5 = 2Ωr + 2η2[R(2Ωr)−R(−2Ωr)]

+ (ε2/4)[I(Ωr)− I(−Ωr)], (25)

where Γi is the decay rate in the dressed state represen-
tation, which is dependent on the frequency difference be-
tween the coherent and the stochastic parts of the driving
field, when the central frequency of the stochastic field
is tuned to δ = 0,±Ωr and ±2Ωr, the transition rates
can be enlarged or reduced significantly. The parameters
Ωr−Ω3± and 2Ωr−Ω5 represent the frequency shifts ow-
ing to the effect of the stochastic field. In the high field
intensity limit, these shifts are negligibly small.

In the dressed state representation, the underlying
physical processes are very transparent. For example, the
downward transitions between the same dressed states of
two adjacent dressed-state triplets give rise to the central
component of the fluorescence spectrum, i.e.,

Λ0(ω) = Re
[
2η2 N0(s)

(s+ Γ1+)(s+ Γ1−)− Γ2+Γ2−

]
s=iω

,

(26)

with

N0(s) =2(2s+ Γ1+ + Γ1− − Γ2+ − Γ2−)ρaaρcc
− (1− 9ε2)(Γ2+ρcc + Γ2−ρaa)ρbb
+ (1 + 9ε2)[(s+ Γ1−)ρaa + (s+ Γ1+)ρcc]ρbb.

This spectral component consists of two Lorentz functions,
whose central frequencies are ωL and linewidths 2γ±0 =
(Γ1+ + Γ1−)±

√
(Γ1+ − Γ1−)2 + 4Γ2+Γ2−.

However, the transitions |a〉 → |b〉 and |b〉 → |c〉 lead to
the lower-frequency inner sideband, yielding an expression
of the form

see equation (27) below

whilst the transitions |b〉 → |a〉 and |c〉 → |b〉 result in the
higher-frequency inner sideband,

see equation (28) below.

Since the cavity-induced level shifts are negligibly small,
Λ1 will display a single spectral line located at frequency
ωL−Ωr , and Λ2 a line at ωL +Ωr. It is apparent that the
inner sidebands are also composed of two Lorentzians with

linewidths 2γ±1 = (Γ3+ + Γ3−)±
√

(Γ3+ − Γ3−)2 + 4Γ 2
4 .

The final transitions, |a〉 → |c〉 and |a〉 → |c〉, respec-
tively generate the lower-frequency and higher-frequency
spectral lines of the outer sidebands, which are given by

Λ3(ω) =
[

2η2(1 + ε2)ρaa
s+ Γ5 + iΩ5

]
s=iω

, (29)

Λ4(ω) =
[

2η2(1 + ε2)ρcc
s+ Γ5 − iΩ5

]
s=iω

. (30)

Λ1(ω) = Re

[
4η2[8η2(s+ Γ3+ + iΩ3+) + ε2Γ4]ρbb + ε2

2 [(1 + ε2)(s+ Γ3− + iΩ3−) + 8η2Γ4]ρaa
(s+ Γ3+ + iΩ3+) (s+ Γ3− + iΩ3−)− Γ 2

4

]
s=iω

(27)

Λ2(ω) = Re

[
4η2[8η2(s+ Γ3− − iΩ3−) + ε2Γ4]ρbb + ε2

2 [(1 + ε2)(s+ Γ3+ − iΩ3+) + 8η2Γ4]ρcc
(s+ Γ3+ − iΩ3+) (s+ Γ3− − iΩ3−)− Γ 2

4

]
s=iω

(28)
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The spectral lines are centered at frequencies ωL ± 2Ωr,
respectively, and have width 2Γ5. In equations (25–30), the
ρjj (j = a, b, c) which appear are the steady-state dressed-
state occupation probabilities, given by equations (18).

Equations (26–30) show that when δ = 0, the fluores-
cence spectrum is symmetric because the decay rates obey
Γi+ = Γi− (i = 1, 2, 3) and the populations in dressed
states satisfy ρcc = ρaa. Since the Lorentz function R(0)
is absent in the linewidths 2γ±0 of the central peak and
present in 2γ±1 and 2Γ5, the central peak is much narrower
than the inner and outer ones when δ = 0. For the case
of the atom with two nearly degenerate excited states (for
example, ω21 = 10 and Ω = 100), equations (27, 28) indi-
cate that the inner sidebands located at ωL±Ωr are hardly
visible because of ρbb ≈ 0 and ε2 ≈ 0, as illustrated in Fig-
ure 2. When δ = 2Ωr, the transition rates Rca and Rac
are enhanced significantly, this means that the outer side-
bands are enhanced and narrowed and the central peak is
suppressed and broadened. Because ρaa > ρcc at δ = 2Ωr,
the lower-frequency sideband is slightly higher than the
higher-frequency one.

For the case of ω21 = 200 and Ω = 300, by inspec-
tion of equation (25) for the decay rates Γi± and Γ5, one
finds that when δ = 0, the decay rates Γ1± and Γ2± are the
same as those in the absence of the stochastic field because
of Ωr � κ, but Γ3± and Γ5 are strongly enhanced with
the amplitudes 2η2D and 8η2D, respectively. So the inner
and outer sidebands are significantly broadened and sup-
pressed, whilst the central peak is narrowed and enhanced,
as shown in Figure 3a. When the detuning is chosen as Ωr

and 2Ωr, γ+
0 is increased evidently, even larger than γ±1

and Γ5, so the central peak can be broader than the in-
ner and the outer sidebands, as illustrated in Figure 3c.
Moreover, for δ = 2Ωr, γ−0 (∼ γ) is much smaller than
γ+

0 (∼ D/2), the central peak consists of one very sharp
peak superimposed on a very broad Lorentz profile, which
is similar to that in the system of a V-type three-level
atom with two nearly parallel dipole moments [21]. The
asymmetric feature of the spectrum in Figure 3b can be
understood as follows: since ε2 = 1/19, equations (27, 28)
show that the peak values of the left and right inner side-
bands are mainly dependent on ρbb/Γ3− and ρbb/Γ3+ re-
spectively, the left inner peak is lower than the right inner
one because of Γ3− > Γ3+ for δ = Ωr. As shown in Fig-
ure 1f, ρaa > ρcc when δ = Ωr, so the left outer peak is
higher than the right one. But for δ = 2Ωr, Γ3+ ≈ Γ3−
and ρcc ≈ ρaa, thus the asymmetric feature almost disap-
pears in Figure 3c. At this moment, ρbb is much smaller
than ρaa and ρcc as indicated in Figure 1f, consequently
the outer peaks are much higher than the inner ones.

The spectral line narrowing and asymmetric features
presented in Figure 4 can be also explained by use of equa-
tions (26–30) as well. For example, because of ρcc > ρaa
when δ > 0 as shown in Figure 1b, the left outer and in-
ner peaks can be higher than the right corresponding ones.
However, comparing with Figures 2 and 3, we can see that
by adjusting the frequency detuning δ, the spectral line
features for ε2 � 1 can be controlled more efficiently.

However, when the stochastic field is a complex white
noise field, i.e., the bandwidth κ → ∞, the properties
of resonance fluorescence spectrum differ evidently from
those when κ is finite as mentioned in the above. For
example, when κ → ∞, from equation (26) the central
component of the fluorescence spectrum reduces to

Λ0(ω) = 4η2Re
[

2ρaa
s+ γ(1− ε2)/2 + (1− ε2/2)D

+
18ε2ρaaρbb

s+ γ(2− 3ε2 + 3ε4)/2 + 3ε2D/3

] ∣∣∣∣
s=iω

. (31)

The central component is consisted of two Lorentz func-
tions. Only when ε2 → 0, i.e., the two upper levels are
nearly degenerate, one relative narrow peak may be su-
perimposed on a broad Lorentzian profile. Unfortunately,
at this moment, the height of this relative narrow peak
also tends to zero, which means that the line narrowing
becomes hardly visible, which is similar to that when the
stochastic field is absent and the two dipole moments are
nearly parallel or antiparallel [8,24]. Therefore, using the
stochastic field with finite bandwidth provides another
way to observe the line narrowing phenomenon in reso-
nance fluorescence.

We note that Narducci et al. [25] considered a V-type
atomic system in which two excited levels are coupled to
the ground state by different laser fields. When one transi-
tion is very weakly driven compared to the other, the spec-
tral line arising from fluorescence from the strong transi-
tion can be narrowed. The spectral narrowing in such a
system was later confirmed experimentally by Gauthier
et al. [26]. The origin of this phenomenon is different from
that pointed out in the above. Here we see, because the
stochastic field with finite bandwidth forms a frequency-
dependent bath for the V-type three-level atom, “tailor-
ing” this bath through adjusting the frequency detuning
δ provides an effective way to control the resonance fluo-
rescenced [27].

5 Conclusions

We have investigated the modification of the steady-state
populations and resonance fluorescence of a V-type three-
level atom driven by a strong coherent field and a weak
stochastic field with a wide bandwidth. A strong depen-
dency of the dressed-state populations on the central fre-
quency of the stochastic field is shown. Population inver-
sion can be reached for appropriate Rabi frequency and
frequency detuning δ between the coherent field and the
stochastic field. If the level gap ω21 and the Rabi fre-
quency Ω obey ω21 < 2Ω, then for δ < 0, ρaa < ρcc,
and for δ > 0, ρaa > ρcc. When ω21 > 2Ω, the situa-
tion is reversed. The resultant fluorescence spectrum is
also strongly dependent on the central frequency of the
stochastic field. When δ = 0, the spectrum is symmetric,
and the central peak is much higher and narrower than the
inner and outer peaks. If the coherent part of the driving
field is very strong, the central peak can be narrowed to
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the natural linewidth. When the central frequency of the
stochastic field is tuned to resonance with one of the spec-
tral sidebands, the central peak is suppressed and broad-
ened, whilst the inner and outer ones can be enhanced and
narrowed. Because the population distributions in the up-
per and lower dressed states |c〉 and |a〉 are asymmetric
and the transition rates are different, the inner sidebands
and the outer sidebands become asymmetric.
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